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On its opening day the London Millennium footbridge experienced unexpected large amplitude wobbling
subsequent to the migration of pedestrians onto the bridge. Modeling the stepping of the pedestrians on the
bridge as phase oscillators, we obtain a model for the combined dynamics of people and the bridge that is
analytically tractable. It provides predictions for the phase dynamics of individual walkers and for the critical
number of people for the onset of oscillations. Numerical simulations and analytical estimates reproduce the
linear relation between pedestrian force and bridge velocity as observed in experiments. They allow prediction
of the amplitude of bridge motion, the rate of relaxation to the synchronized state and the magnitude of the
fluctuations due to a finite number of people.
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I. INTRODUCTION

On its opening day on June 10, 2000, the Millennium
footbridge over the River Thames in London attracted thou-
sands of spectators. Many on the bridge, however, were
scared by a quite noticeable and disturbing lateral vibration,
reaching amplitudes of several centimeters and causing
people to reach to hold onto the handrails for stability. A
partial solution was found for the second day, when access to
the bridge was limited, but eventually the bridge was closed
until a cure to the problem had been implemented �1–3�.
Investigations by the engineering team involved in the bridge
design quickly eliminated several possible causes. It could
not be attributed to differences in mechanical behavior be-
tween the design studies and the actual bridge, nor to vortex
shedding in the presence of wind, the reason for the collapse
of the Tacoma Narrows bridge in 1940 �4�, nor to deviations
from established procedures and guidelines. Various models
have been proposed to describe the dynamics, �1–3,5–7� but
they do not account for the transition to synchronized dy-
namics. Perhaps closest to the ideas presented here comes the
letter by Josephson �8�, in which he points out similarities to
the synergetics of Haken �9�.

The key to an understanding of the problem came from
controlled studies with variable numbers of walkers on the
bridge. It was found that the oscillations set in quickly once
the number of walkers on the bridge exceeded a critical num-
ber and that, when this occurred, many started to move in
synchronized step. During these investigations �3,10� several
previous examples on other footbridges were identified. The
model for the synchronized walking presented here �i� ex-
plains the transition to synchronization, �ii� predicts a rela-

tion between the critical number of walkers and a combina-
tion of characteristics of the bridge and human motion, and
�iii� explains the observed proportionality between the bridge
velocity and the force exerted by pedestrians. It provides a
basis on which the findings for the Millennium bridge can be
generalized and extended to other bridges. The model can
also serve as a guide for further behavioral and experimental
studies.

At the heart of the theoretical analysis is a suitable model
for the motion of pedestrians and their interaction with the
bridge. In Sec. II we discuss the assumptions and mathemati-
cal simplifications that lead to the explicit functional form
used in the numerical studies. Within a linear stability analy-
sis we derive in Sec. III the critical parameters for the onset
of the bridge oscillation and discuss the dependence on
damping, frequency ratios and pedestrian parameters. In Sec.
IV we present analytical and numerical results on the non-
linear behavior. The determination of the various parameters
and the comparison to observations on the London Millen-
nium Bridge is discussed in Sec. V. Some concluding re-
marks are given in Sec. VI.

Finally, we note that a brief version of this work has been
presented in Ref. �11�. In that paper a closely related, but
slightly different, model was employed, and we discuss its
relation to the model used in the present paper in Sec. VI.

II. MODELING

The bridge motion can be expanded in normal modes so
that the lateral oscillations can be described as damped har-
monic oscillators forced by the motion of the pedestrians,
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Mÿ + 2M��ẏ + M�2y = �
i=1

N

f̂ i�t� , �1�

where y�t� is the modal bridge displacement, � its �angular�
eigenfrequency, M the equivalent modal mass, � the �dimen-
sionless� damping constant, and the dots on y denote time
derivatives. The lateral modal force exerted on the bridge by

pedestrian i is f̂ i�t�, where i=1,2 , . . . ,N, with N the number
of pedestrians on the bridge.

In order to self-consistently model the dynamics of the
bridge-pedestrian system, we must incorporate the dynamics
of the different responses of individual pedestrians as they
adjust their stepping under the influence of the bridge mo-
tion. A fundamental difficulty is that there does not currently
exist a well-developed, generally accepted, physiological
model of human walking dynamics and its response to exter-
nal inputs. In the absence of such knowledge, we seek to
construct a general model using as few assumptions as pos-
sible.

For this purpose, it is useful to restrict consideration to the
construction of a model of the response of walkers to small
bridge displacements, and to assume that the walker response
is approximately linear in the bridge displacement. This as-
sumption will be further discussed at the end of this section.
In addition, we employ the following hypotheses.

�i� We assume that the effect results solely from an inter-
action between the bridge and the walkers and not from vi-
sual or other communication between the walkers: people-
people interactions are not included in the model.

�ii� The only significant bridge variable sensed by the
walkers is that due to the side-to-side force felt by the walk-
ers in the moving frame of the bridge �i.e., the walkers di-
rectly sense only the side-to-side bridge acceleration ÿ�t��.

�iii� The dynamics of a walker’s response to small ampli-
tude bridge motion is describable within the phase oscillator
framework �described below�.

Regarding hypothesis �ii�, it might be argued that a walker
could directly sense the bridge position y�t� from some vi-
sual input, e.g., the motion of other walkers or the bridges
displacement relative to the supports. This, however, requires
that the view of the bridge is not blocked by other walkers.
We expect that visual input from observing other walkers is
rather indirect and that orientation on far away fixed points
�such as St. Pauls cathedral� is, because of the small parallax,
much less significance than the acceleration.

Regarding hypothesis �iii�, in the absence of bridge mo-
tion, the stepping of walker i is taken to be periodic with an
angular frequency �i. Thus, in the absence of bridge motion,
we can write

f̂ i�t� = f i��i�t�� , �2�

�̇i = �i. �3�

What is meant by hypothesis �iii� is that, in the presence of
bridge motion, we retain Eq. �2� and model the effect of the
bridge on walker i by an additional term in �3� affecting the
evolution of the phase of walker i,

�̇i = �i − Fi�t� . �4�

This type of description is motivated by the observation that,
when there is no bridge motion, the terms in the sum on the
right-hand side of �1� tend to cancel for a large number of
walkers due to the phase incoherence of the walkers’ step-
ping. Note that this applies even though the amplitude of the
lateral force of individual walkers is nonzero. Thus, in the
linear stage of instability, only perturbations of the walker
phases are important. �We emphasize that this cannot be con-
cluded to apply in the strongly nonlinear case of large bridge
oscillations.� Note also that the above justification of the
phase oscillator description is essentially the same as that
used by Kuramoto �12� in formulating his well-known
coupled oscillator model �13�.

The immediate problem is now seen to be that of model-
ing the quantity Fi�t�. Most generally, Fi�t� depends on t
through the values of the functions ÿ�t�� and �i�t�� for all
time t�� t. That is, for fixed t, Fi�t� is a functional of the past
history of ÿ and �i. In addition, as previously stated, moti-
vated by our initial restriction to the case of small ÿ, we take
Fi�t� to be linear in ÿ,

Fi�t� = �
−�

t

Li�t,t�;��t���t� � t�ÿ�t��dt�, �5�

where Li is a function of t and t� and a functional of �i�t�� for
t�� t.

We now make the further assumption that Fi�t� depends
only on the value of � at the current time t and not on its past
history. This assumption greatly facilitates analysis, and jus-
tification for it is given at the end of this section. We can then
rewrite �5� as

Fi�t� = �
−�

t

L̂i�t,t�,�i�t��ÿ�t��dt�, �6�

where L̂i is a function of its three arguments. Since we re-
quire �6� to be independent of the choice labeling the time
instant t=0, we require that �6� be invariant to the transfor-
mation: Fi�t�→Fi�t+T�, ÿ�t�→ ÿ�t+T�, �i�t�→�i�t+T�. In-
serting this transformation in �6�, and defining t̃= t+T and

t̃�= t�+T, we recover �6�, but with L̂i�t , t� ,�i� replaced by

L̂i�t̃−T , t̃�−T ,�i�, which, by the presumed invariance to the

labeling of the zero of time, is independent of T. Hence L̂i
must have the form

L̂i�t,t�,�i� = L̂i�t − t�,�i� . �7�

Expanding L̂i in Fourier series, we have

L̂i��,�� = �
n=−�

+�

L̂i
�n����exp�in�� . �8�

Thus �6� becomes
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Fi�t� = �
n=−�

+�

exp�in�i�t��Li
�n��ÿ�t�� , �9�

where Li
�n� denotes the linear operator defined by

Li
�n��h�t�� = �

−�

t

L̂i
�n��t − t��h�t��dt�, �10�

and, since L̂i is real,

L̂i
�n� = �L̂i

�−n��*, �11�

where * denotes the complex conjugate.
To summarize, our model so far reduces to Eqs. �1�, �2�,

�4�, �9�, and �10�. A linear stability analysis of these equa-
tions is given in Sec. III where three important additional
facts are invoked to further simplify the model for walkers
on the Millennium Bridge. These facts are the following.

�1� The dimensionless damping constant � in Eq. �1� is
small �1,2�.

�2� The unperturbed walker frequencies �i have been
measured for large populations of walkers �14�, and the dis-
tribution of walker frequencies has been found to have a
spread 	 �square root of the variance of �i� that is small
compared to the population averaged frequency, 
.

�3� For the Millennium Bridge, � and 
 are very close in
value �1,2�.

Regarding �3� we note that this applies well to observa-
tions of the north span of the bridge. Thus our model does
not seek to address oscillations at the lower frequency some-
times observed on the bridge’s central span. We focus on the
oscillation for the north span because it is the only mode for
which data on the critical number of pedestrians has been
presented �1,2�.

Taking the small quantities �, 	 /
, and ��−
 � /� to be
of the same order, then makes possible a perturbation expan-
sion. Important conclusions from this analysis �Sec. III� are
that, to lowest order in the perturbation expansion, the fol-
lowing apply to the linear analysis:

�a� only the n= ±1 terms in �9� contribute;
�b� the operator Li

�±1� is approximately constant,

Li
�+1��h�t�� = Cih�t�,Li

�−1��h�t�� = Ci
*h�t� , �12�

where Ci is a complex number characterizing walker i;
�c� only the fundamental harmonic of f i��i� �appearing in

�2�� contributes �i.e., in the Fourier series f i���
=�mfi

�m� exp�im��, only m= ±1 contribute to lowest order in
our expansion of the linear theory�.

Incorporating the linear analysis results �a�–�c� in �1�, �2�,
�4�, �9�, and �10�, we obtain the following model:

Mÿ + 2M��ẏ + M�2y = �
i

f̄ i cos��i + �i� , �13�

�̇i = �i − ciÿ cos��i + �i� , �14�

where f̄ i exp�i�i�= f i
�1�, ci exp�i�i�=Ci, and � f̄ i, �i, ci, �i� are

all real. In addition, by shifting the zero of �i, we can, with-
out loss of generality, from now on take �i=0 for all i.

We now offer some further discussion concerning as-
sumptions that we have made in this section.

The assumption that the walker response Fi�t� is linear in
ÿ: This assumption is clearly valid when one examines the
linear stability of the pedestrian-bridge system. The system
of equations that results from the assumption that Fi�t� is
linear in ÿ is, however, nonlinear, since �6� involves �i�t�,
which, by �1� drives the bridge response. In Sec. IV we will
use �13� and �14� as a basis for investigating the nonlinear
system response. We do this on the basis that �13� and �14�
represent a lowest order model that satisfies the minimal re-
quirements that it reproduces the correct form of the linear
dynamics of the system, while at the same time depending
simply on the bridge acceleration ÿ. At small nonlinearity
�e.g., as would apply when the marginal stability condition
�see Sec. III� is just slightly exceeded�, the most important
correction to linearity of Fi in ÿ would be a term quadratic in
ÿ whose main effect would be a nonlinear frequency shift of
�i. By our subsequent use of �13� and �14�, we are essen-
tially neglecting this effect.

The assumption that �5� can be replaced by �6�: That is,
that Fi�t� only depends on the current value of the phase,
�i�t�, rather than on its entire past history. If ÿ is assumed
small, Eq. �14� implies that in Eq. �5� the past values of �i
�i.e., �i�t�� for t�� t� can be approximated as

�i�t�� � �i�t� − �i�t − t�� , �15�

for

ci�ÿ��t − t�� �  . �16�

In the linear phase of the instability, we formally have ÿ
→0, and condition �16� is, by definition, always satisfied. In
the case of nonlinear evolution with �ÿ� small, Eq. �16� can
be satisfied for a long time, �i�t− t���. Further, it would
seem reasonable that walker memory of the past history of �i
would not extend over many walker periods. Thus for ÿ
small �15� seems a reasonable approximation to insert for
�i�t�� in �5�. Furthermore, we note that �15� says that the past
history of �i�t�� is completely determined by the current
phase �i�t�, hence leading to �6�.

The assumption of linear bridge dynamics. In writing Eq.
�1� we have taken the bridge motion to be linear. This is, of
course, again valid for the treatment of the linear instability
of the system. Our subsequent use of our model in the non-
linear regime �Sec. IV� essentially assumes that any nonlin-
earity in the bridge dynamics is weaker than the nonlinearity
of the walker response due to the term ÿ cos��i+�i� in �14�.
Because of the narrowness of the resonance between the
bridge and the pedestrians, the most likely bridge nonlinear-
ity of potential interest is a nonlinear frequency shift of the
bridge resonant frequency. While this effect could, in princi-
pal, be included within the present analysis framework
�along with any similar frequency shift in �i�, we will work
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here on the assumption that the most significant factor is the
nonlinearity in the walker response term in �14�.

Assumption that only lateral walker forces are important:
Another presumption, implicit in Eq. �1� and our definition

of f̂ i�t�, is that the bridge response is driven by the lateral
force exerted by the walkers. In particular, it is known
�1,2,6,15� that the lateral force exerted by walkers is small
compared to their back-to-front force, which in turn is small
compared to their vertical force variation. Thus it might be
asked whether our neglect of these forces is warranted. In the
case of the linear analysis of the Millennium Bridge, focus
on the lateral force is justified because the frequency of this
force resonates with the bridge natural frequency �, and this
is the observed frequency of the bridge response. In contrast,
the frequency of the vertical and back-to-front walker forces
are at a fundamental of 2�i �i.e., a similar force is exerted
every time a foot is put down �whether it be the left or the
right foot��. Thus nonlinearity would be necessary for these
2�i forces to drive a bridge response at �. Even in the non-
linear regime, experiments indicate that vertical and back-to-
front forcing are not significant for the bridge motion. For
example, on page 26 of their paper, Dallard et al. �1� state
that their data shows that “the lateral component of load was
by far the most significant.” Furthermore, experiments by
McRobie et al. �15� on a large rig �which had only a lateral
degree of freedom� were able to replicate the instability phe-
nomenon observed on the Millennium Bridge, thus further
supporting the assumption that lateral forces are the impor-
tant effect.

III. LINEAR ANALYSIS

In this section we examine the linear stability problem for
the bridge-pedestrian system using Eqs. �1�, �2�, �4�, and �9�–
�11�. For this purpose, it is useful to assume that the
i-dependence of walkers can be parametrized by a vector of
walker parameters that we denote pi. Thus we write

L̂i
�n���� = L̂�n���,pi� �17�

�where L̂i is defined in �8��. The vector pi also includes �i as
a component and also characterizes the function f i���, e.g.,
by including as components of pi the Fourier coefficients
f i

�m�,

f i��� = �
m

fi
�m� exp�im�� , �18�

where f i
�0�=0 �otherwise, by Newton’s third law, the bridge

would exert an average lateral force on the walker, thus caus-
ing the walker to accelerate sideways�.

We model the instantaneous state of the walkers on the
bridge by a continuous distribution function ��� ,p , t�
�12,13,16� such that

�
0

2

���,p,t�d� = Q̂�p� , �19�

where ��� ,p , t�d�dp is the fraction of walkers on the bridge
whose phase angle is between � and �+d� and whose p

vector lies in the parameter space volume dp centered at p.

The parameter distribution function Q̂�p� is independent of
time �the parameters of an individual walker are assumed to
not change with time�. The description of the walker popu-
lation via a continuous distribution function ��� ,p , t� is ex-
pected to be a good approximation insofar as the number of
walkers is large N�1. From �4� and �9�–�11�, conservation
of the number of walkers implies the following evolution
equation for �:

��

�t
+ �

��

��
−

�

��
	� �

n=−�

+�

ein�Li
�n��ÿ�
 = 0. �20�

In addition, the right-hand side of �1� is

�
i=1

N

f̂ i�t� = N� ���,p,t��
m

f �m�eim�d�dp . �21�

A trivial solution to �1�, �20�, and �21� is

�0 = Q̂�p�/2 �22�

and y�0. This corresponds to the case in which people on
the bridge walk with their natural frequencies, and their ef-
fect on the bridge cancels because their phases are uniformly
distributed in 0���2.

To study the stability of this state, we introduce a pertur-
bation �1 to �22�,

� = �0�p� + �1��,p,t� , �23�

and linearize �20� for �1 and y small. Assuming a time de-
pendence exp�st� for the small quantities, we obtain from
�20�,

s�1 + �
��1

��
= is2�0y �

n=−�

+�

nein�C�n��s,p� , �24�

where

C�n��s,p� = �
0

�

e−s�L̂�n���,p�d� . �25�

The solution of �24� is

�1 = is2�0y �
n=−�

+�

n
C�n��s,p�ein�

s + in�
. �26�

Using �26� in �21� we obtain from �1�

s2 + 2��s + �2 =
is2N

M
� dpQ̂�p� �

n=−�

+�

n
C�n��s,p�f �−n�

s + in�
.

�27�

We now make use of the three facts mentioned in Sec. II
concerning walkers on the Millennium Bridge �small bridge
damping, ��1; small spread in the frequency distribution of
walkers, 	�
; and near resonance between the average fre-
quency 
 of the walker population and the bridge, �

−� � ���. This suggests the following ordering for the
quantities in �27�:
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s = − i� + ��s�, �28�

� = ���, �29�

� = � + ����, �30�

	 N

2�M

C�n��− i�,p�f �−n� = �2B�n�, �31�

where ��1 is an expansion parameter, and s�, ��, ��, and
B�n� are all of order one. �We note that, since y�t� is real, an
equally valid form in place of �28� is s= i�+��s�.� Note
that, to lowest order in �, the s dependence of C�n��s ,p� is
ignorable, and C�n��s ,p� is replaced by C�n��−i� ,p�. This
yields Eq. �12� with

Ci � C�1��− i�,pi� ,

justifying claim �b� of Sec. II. Inserting �28�–�31� in �27�, the
denominators of the integrand on the right-hand side of �27�
yield �s+ in��−1= �i����n−1�+��s�+ in����−1. Thus, the n
�1 terms are smaller than the n=1 term by O���, and the
n=1 term dominates, thus justifying claims �a� and �c� of
Sec. II. �If s= i�+��s� replaces �28�, then n=−1 domi-
nates.� To lowest order we obtain

s� + �� = − i� dp
B�1�Q̂�p�
�� − is�

. �32�

Since B�1� and � are parameters of individual oscillators we

write the parameter vector as p= �� , B̄ ,� , p̂†�† where B̄ei�

=B�1� and † denotes transpose. Thus we represent dp as

d�dB̄d�dp̂ and integrate over p̂ to obtain

s� + �� = − i�
0

2

d��
0

�

dB̄� d��Q���,B̄,��
B̄ei�

�� − is�
,

�33�

where Q��� , B̄ ,�� is the joint distribution function of ��, B̄,
and �, and the contour of the �� integration is taken in the
causal sense �16�, i.e., running from Re����=−� to Re����
= +� passing below the pole ��= is�.

As an example, we consider the case where B̄ and � are
independent of ��,

Q���,B̄,�� = P�����R�B̄,�� , �34�

where P� is the distribution function for ��, and R is the joint

distribution function for B̄ and �. Defining b� and � by

�
0

2

d��
0

�

dB̄R�B̄,��B̄ei� =
1

4
b�ei�, �35�

Eq. �33� becomes

s� + �� = −
i

4
b�ei�� P�����

�� − is�
d��. �36�

We first analyze �36� by considering the case of marginal
stability, s�→−i�0�+0+, and take the integration contour in

the complex �� plane to run from Re����=−�, Im����=0,
along the real �� axis to the point Re����=�0�−�, then to
Re����=�0�+� along a radius � semicircle passing below
the pole at ��=�0�, and then from Re����=�0�+� to
Re����= +� along the real �� axis. Letting �→0+ this gives

− i�0� + �� =
1

4
b�ei�	P���0�� − iPV�

−�

+� P�����
�� − �0�

d�
 ,

�37�

and PV denotes a principal value integration. The distribu-
tion function for walker frequencies has previously been de-
termined from data on a large population of walkers and
fitted to a Gaussian distribution �17�. We therefore take

P����� =
exp�− ��� − 
��/2	�2�

�2	�
. �38�

The simplest case is when the parameters 
� and � are zero.
In this case the imaginary part of �37� has a solution with
�0�=0. This follows since the principal value integral is zero
because �for 
�=0� P����� is even about ��=0. The real part
of �37� then yields a critical bridge damping �c0�
= �1/4�� /2�b� /	�� such that, if ����c0� , the bridge-
pedestrian system is unstable. �The subscript zero on �c0� de-
notes the case 
�=�=0.� Introducing the more physical vari-
ables, �=���,	 /�=�	�, b=�2b�, we obtain the instability
condition

� � �c0 =�

2

b�

4	
. �39�

For P����� even and monotonically decreasing away from
��=0 �as in Eq. �38� with 
�=0� and �=0, the relevant root
s� of �36� is real for all �, with s��0 corresponding to in-
stability and s��0 corresponding to stability. To determine
s� we now take the integration path to run from Re����=
−� to Re����= +� along Im����= is�, with a small semicir-
cular indentation below the pole at ��= is�. Using this path,
we introduce the change of variables

x = ��� − is��/	�

in terms of which �36� becomes

s� + �� = −
ib�

4
� dx

x
P��	�x + is�� . �40�

Inserting the Gaussian form �38� with 
�=0 into �40� yields

s� + �� = �c0� exp�y2/2�	1 −� 2


I�y�
 , �41�

where y=s� /	� and I�y� denotes the integral,

I�y� =
1

�2
�

−�

+� exp�− z2/2�
z

sin�yz�dz , �42�

which can be shown to be
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I�y� = �
0

y

exp�− z2/2�dz = �/2erf�y/�2� , �43�

where erf�u� is the error function of u. Thus �41� becomes

�/�c0 = exp�y2/2��1 − erf�y/�2�� − �2/��2b/�4	2��−1y ,

�44�

where y=� /	, and ��Re�s�. Equation �44� gives an explicit
expression for � as a function of the exponential growth or
damping rate � ���0 for growth�. Figure 1 shows the
growth rate as a function of the damping plotted as � /	
versus � /�c0 for several values of �2b / �4	2�. Expanding
�44� for �� /�c0−1� small we obtain

� =
�c0 − �

1 + ��2b/�4	2��
� . �45�

Equation �39� applies for 
�=�=0. We now consider
how �39� is modified for nonzero but small 
� and �. In
particular, we consider the distribution function �38� and do a
perturbation expansion of �37� about 
�=�=0 considering
�0� /	�
� /	���1. Writing

P����� = P����� + 
� − �0�� − �
� − �0���

and expanding for small �
�−�0��, we have

P����� � P���� + 
� − �0���1 + �
� − �0����� − �0��/	
2� .

�46�

Inserting �46� into the principal value integral yields

PV�
−�

+� P�����
�� − �0�

d�� � −
�0� − 
�

	�2 . �47�

We also have P���0����1−
��0�−
��2

2�	��2 � 1
�2	�

, ei��1+ i�− 1
2�2.

Using these and �47� in �37�, and defining the normalized
frequency shift between �0 and 
 by �= ��0−
� /	, we ob-

tain the critical bridge damping value �c�� ,�� for ��

−�� /	 � ��1,

���c��,��/�c0� − 1� � −
1

2
	�2 + 2� 2


�� + �2
 , �48�

where

� = − �	
 − �

	

 + �c0��/	1 +� 2


�c0
 . �49�

Since the coefficient of the �� term in �48� is less than 2, the
right-hand side of �48� is always negative if �� ,��� �0,0�,
making �c smaller than �c0. This indicates that, within the
range ��
−�� /	 � ��1, the situation, 
−�, �=0, repre-
sents a worst-case-scenario in that it is the most unstable.
Our numerical results of Sec. IV B indicate that this conclu-
sion persists when ��
−�� /	� and � are not small.

We now briefly consider the effect of nondeterministic,
randomlike inputs modifying the phase of walkers. Such in-
puts might include social interactions with nearby walkers,
stumbles, erratic walker mood changes, etc. A simple means
of modeling these effects is as a zero-mean additive random
increment to the right-hand side of Eq. �4�. Denoting this
increment by �i�t� and taking it to be approximately delta
correlated in time, we have

��i�t��i�t��� = 2D����t − t�� , �50�

where the angle brackets indicate an ensemble average, and
D�� is a parameter that characterizes the strength of the ran-
dom inputs. Incorporating �50� via a Langevin-type analysis
results in an additional term D���

2� /��2 appearing on the
right-hand side of �20�. Thus D�� can be interpreted as a
phase diffusion coefficient. As a result, the denominator of
the summand appearing in �27� becomes ��s+n2D���+ in��
and the denominator in the integrand appearing in �36� be-
comes ���− i�s+D����. Analysis of �36� with this replace-
ment shows that �c0 is decreased by the presence of D��; i.e.,
such random inputs are stabilizing.

IV. NONLINEAR BEHAVIOR

In this section we adopt �13� and �14� as a model for the
dynamics describing the nonlinear evolution of the bridge-
pedestrian system. This model satisfies the minimal require-
ments that it depends simply on the bridge acceleration ÿ and
that it reproduces the correct form of the linear dynamics of
the system. On the other hand, this model is not necessarily
expected to yield accurate quantitative agreement with ex-
periments in the nonlinear regime. Nevertheless, the model
might be reasonably anticipated to yield qualitative features
of the observed motion, as well as rough quantitative agree-
ment with the observations. Indeed, this will be shown to be
the case. A further point to note is that our current state of
knowledge concerning the response of walkers to external
forces is very meager, and does not justify a more elaborate
model. Thus we view results from �13� and �14� as a provid-
ing guide to future studies rather than as a definitive descrip-
tion of the system’s nonlinear behavior. In this spirit, and in

FIG. 1. �Color online� Normalized growth rate y=� /	 vs the
normalized bridge damping z=� /�c0 for different values of a
=�8	2 / ��2b� as calculated from Eq. �44�. The full blue lines are
the actual results from �44�, the dashed red ones the corresponding
linear approximations from Eq. �45�. The values for a increase from
the lower left to upper right and are a=0.5, 1.5, 2.5, 3.5, and 4.5.
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order to simplify our analysis, we henceforth neglect the

variation of the parameters �i, f̄ i, and ci from walker to
walker; that is, we set

f̄ i = f , ci = c, �i = �

for all i. Since we do not know the distribution of these
parameters, this choice is as good as any, and it is hoped that
qualitative results will not be sensitive to it. Formulations
like this have often been used for mathematically similar
problems that arise in other fields �e.g., biological rhythms
�19,20�, such as the synchronized flashing of fireflies�, and
have been found in those cases to be very useful. As previ-
ously mentioned, we use a Gaussian model for the distribu-
tion function of the walker frequencies,

P��� = ��2	�−1 exp�− �� − 
�2/�2	2�� . �51�

For the purposes of further analysis it is useful to set the
equations into a dimensionless form; the new dimensionless
quantities will be distinguished by a tilde over the symbols.
We rescale time t= t̃ /�, amplitude y=Nf / �M�2�ỹ, and fre-
quencies �i= �̃i�, 
= 
̃�, 	= 	̃�, so that

ÿ̃ + 2�ẏ̃ + ỹ = �cos �� , �52�

�̇i = �̃i − bÿ̃ cos��i + �� , �53�

and the distribution function for �̃ is

P̃��̃� = ��2	̃�−1 exp�− ��̃ − 
̃�/�2	̃2�� .

Here �cos �� denotes the average of cos �i over all the walk-
ers �i=1,2 , . . . ,N�, and the dots now denote derivatives with
respect to dimensionless time t̃. Except for the damping, all
bridge and individual walker characteristics are then con-
densed into two dimensionless parameters, � and

b = Nf/���Mg0� , �54�

which we call the coupling strength.

A. Analysis

It turns out that for the case �=0 and 
̃=1, analytical
results can be obtained. In this section we restrict consider-
ation to this case. In Sec. IV B, where we study the model,
�52�, �53�, numerically, some results for ��0, 
̃�1 are
given. Further consideration of ��0, 
̃�1, as well as more
extensive simulations and the more technically involved ana-
lytical discussion are left for future investigation. �Note that

̃=1 implies that the peak of the Gaussian walker frequency
distribution function occurs at the bridge resonant fre-
quency.�

The analysis proceeds in a manner similar to that origi-
nally followed by Kuramoto �12,13�. We seek a solution of
�52� and �53� in which the bridge oscillates at its resonant

frequency, i.e., ỹ�t̃�= Ã sin t̃. With this form for ỹ�t̃� we have

− ÿ̃ cos �i =
1

2
Ã�sin�t̃ − �i� + sin�t̃ + �i�� . �55�

Anticipating that ��̇i−1� is small, the second term varies rap-
idly compared to the first. We thus neglect its effect on the
right-hand side of �53�, which then becomes

�̇i � �̃i + 1
2 Ãb sin �t̃ − �i� . �56�

From �56� those pedestrians whose natural stepping frequen-
cies are close enough to the bridge resonance will become

synchronized with the bridge oscillation, i.e., �̇i=1 for these
pedestrians and �i�t̃�= t̃+�i0, where

sin �i0 = 2
�̃i − 1

bÃ
�57�

and ��̃i−1 � �
1
2bÃ for the synchronized pedestrians.

With the bridge responding at its eigenfrequency, the ac-
celeration and harmonic restoring force in �52� cancel and
the force from the pedestrians is balanced by the frictional
force,

2�Ã cos t̃ = �cos �� . �58�

It may be shown �e.g., see Refs. �12,13�� that only the syn-

chronized walkers satisfying ��̃i−1 � �
1
2bÃ make a nonzero

contribution to �cos ��. For the synchronized walkers we
have

�cos �� = �cos�t̃ + �i0�� = cos t̃�cos �i0� − sin t̃�sin �i0� ,

�59�

where �i0 is given by �57�. For �̃i distributed with even sym-
metry about �̃i=1 �as in �51� with 
̃=1�, Eq. �57� yields
�sin �i0�=0. Thus �58� can be satisfied and yields

2�Ã = �cos �i0� . �60�

This relation is the origin of the force-velocity relation de-
termined by Dallard et al. �1–3�.

As in Sec. III we consider the number of walkers on the
bridge to be large �N�1� and adopt a continuum descrip-
tion. Using �57� the average needed for �60� can then be
expressed

�cos �i0� =
bÃ

2
�

−1

+1

dzP̃	1 +
1

2
bÃz
�1 − z2, �61�

where the contribution from the unsynchronized pedestrians

has been taken to be zero for P̃��̃� symmetric about �̃=1
�see standard treatments of the Kuramoto problem �12,13��.

When combined, Eqs. �60� and �61� give

�

b
Ã = Ã

1

8	̃�2
e−�2

�I0��2� + I1��2�� , �62�

where �2= �b2Ã2 /8	̃2� and In��2� is the nth order modified
Bessel function of argument �2, i.e., In��2�
=−1�0

cos�n��exp��2 cos ��d�. A trivial solution to �62� is
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Ã=0, corresponding to the state when the bridge is at rest
and the pedestrians are not synchronized. If � /b is small

enough, �62� has a nontrivial solution, Ã�0, corresponding
to oscillation of the bridge. The requirement on � /b for the
presence of synchronization is the same as the condition for
linear instability given by Eq. �39�. Since b in�39� is related
to the number of pedestrians by �54�, we can express this in
the form of a critical number Nc of people above which
oscillations set in,

Nc = 4�M�	 2�g0

P̃�1�f

 , �63�

where P̃�1�= �	̃�2�−1. Comparing this expression with that
found by Dallard et al. �1–3�,

Nc,Dallard = 4�M�/k �64�

we see that the constant k of dimensions �force/velocity� can
now be expressed as a function of the parameters of the
model,

k =
P̃�1�f

2�g0
. �65�

B. Numerical studies

The discussion in the preceding section suggests a mini-
mal model for the behavior of pedestrians on the bridge, Eqs.
�52� and �53� �dropping the tildes for the dimensionless
quantities for the remainder of this section�

ÿ + 2�ẏ + y = �cos �� , �66�

�̇i = �i − bÿ cos��i − �� . �67�

The stepping frequencies �i of the pedestrians are drawn
from a Gaussian distribution

P��� =
1

�2	
e−��−
�/�2	2�. �68�

The parameters for a numerical simulation thus are

�, damping rate of the bridge motion, normalized

to the bridge resonant frequency;

b, coupling strength between bridge and pedestrians;

�, phase delay in the phase oscillator;

	, variance of the stepping frequency;


, peak position of the walker frequency distribution;

normalized to the bridge resonant frequency;

N, number of pedestrians.

For the other parameters we assume that the phase delays
� and the coupling strengths b are the same for all pedestri-

ans, and that the N frequencies are randomly drawn from the
Gaussian distribution. The width is fixed at value 	=0.086,
as measured in Ref. �14�.

For our first set of simulations, we consider the case �
=0, and a group of 200 walkers. Figure 2 shows the time
asymptotic amplitude of the bridge vs the linear stability
parameter r=� /b. The critical value is rc=P�1� /8=1.83, so
that one expects a zero amplitude for r�rc, rising like a

FIG. 2. �Color online� The dimensionless amplitude bA of the
bridge motion vs the ratio r=� /b. For the simulations �circles� an
average over 20 realizations of the frequency distribution for 200
oscillators and uniformly distributed initial conditions were aver-
aged. Each realization was run for 300 periods and the amplitude

was determined from the square root of the mean of ỹ2+ ẏ̃2 over the
last 100 periods. The black curve represents the theoretical predic-
tion �62�. The critical value here is rc0=1.83, determined with a
width 	=0.086. The other four curves are obtained for a mismatch
�
= 
̃−1 in frequency, �
= ±0.04 and �
= ±0.08 between eigen-
frequency of the bridge and preferred frequency of the people. We
use this data for bA�0.5 to extrapolate r to bA=0, thus obtaining
estimates of the critical value rc at oscillation onset for �
�0.
These results are plotted in the inset as rc /rc0 versus �
, where rc0

is the value for rc at �
=0.

FIG. 3. �Color online� Synchronization in a group of 80 walkers
represented in a phase color plot. The upper frame shows the bridge
oscillation, the lower one color coding of the phases of 80 walkers.
Alternating steps with the left and right foot appear as red and blue,
or light and dark, respectively. For a coupling parameter of b
=0.01 the walkers do not synchronize and the bridge wobbles with
small amplitude.
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square root just below r�rc, i.e., bA�r��rc−r, and going
over to the nonlinear behavior contained in Eq. �62�. The
nonzero values for large r are a finite size effect due to a
finite N; see Ref. �21� for a discussion of effects from finite
numbers of oscillators.

The inset in Fig. 2 shows the dependence of the critical
value on the mismatch �
=
−1 between the original maxi-
mum of the stepping frequency and the eigenfrequency of
the bridge. When the center of the frequency distribution
moves away from perfect resonance, �
�0, the critical
threshold rc drops quickly over a range of about one standard
deviation 	 in the frequency distribution. This means that
weaker damping or more people are required to trigger the
onset of synchronization, as predicted by Eq. �48�.

The onset of oscillations can be visualized in phase plots
for the oscillators. We take the cosine of the phase and color
code its range from −1 to +1 from red to blue. A full period
hence corresponds to a change from red to blue and back to
red. Synchronized walkers will then have the same colors.

Figure 3 shows the dynamics of 100 oscillators for values
of the parameter r well below onset. The bridge shows a
weak residual oscillation and the pedestrians walk essentially
with their unperturbed frequency. Correlations in motion of
the pedestrians are due to accidental alignments in phase and
are transient. As the coupling is increased, synchronization
sets in, starting in the center with oscillators whose frequen-
cies coincide with the bridge eigenmode �see Fig. 4�. For
even larger coupling synchronization sets in more quickly
�Fig. 5�.

A magnification of Fig. 5 in Fig. 6 shows that the time it
takes for a walker to synchronize �if it synchronizes at all�
varies considerably from walker to walker, even if they are
near in frequency.

The short time behavior of the numerical model shows
that, for the specific parameters used to calculate Fig. 7�a�,
synchronization sets in after about 200 periods. Strikingly,
Fig. 7�b� shows that data points for force during one period
vs the maximal velocity fall near a straight line through the
origin, similar to the relation, force proportional to bridge
velocity, identified by Dallard et al. �2,3�. In addition, the
data also show the clockwise loops noted in presynchroniza-
tion events in the field studies �compare Fig. 17 of Ref. �2��.

V. ESTIMATING PARAMETERS

All but one parameter of the model can be extracted from
data and observations: the exception is the parameter b con-
trolling the rate with which pedestrians adjust their stepping
phase to the bridge oscillation. However, as we will see, a
plausible estimate gives results for the critical number of
people needed to start the oscillations in good agreement
with the actual values for the Millennium Bridge.

The parameter b incorporates the response time scale and
sensitivity of the walkers to lateral forces. Studies of the
behavior of people on moving structures �1,2,10,17� con-
vincingly show that walkers are quite sensitive to small lat-
eral accelerations of a fraction of a percent of the earth ac-
celeration. People show measurable response to accelerations
by adjusting their walking at lateral acceleration levels be-

FIG. 4. �Color online� Same as Fig. 3, but now for b=0.02,
where synchronization is observed.

FIG. 5. �Color online� Same as Fig. 3, but now for b=0.03,
where synchronization sets in quickly.

FIG. 6. �Color online� Magnification of a part of Fig. 5, showing
the variation in times at which walkers are entrained.

FIG. 7. �Color online� Time dependence of the synchronization
event. �a� A time trace of the maximal amplitude of the force �con-
tinuous, red� and the maximal velocity of the bridge �times 0.1�
�dotted, blue� during one period shows that the resonance develops
on a time scale of about 200 periods. Here � /b=1.65. �b� A plot of
the force vs velocity of the bridge shows their approximate propor-
tionality and the clockwise loops during the development stage,
similar to the loops seen in the studies of Dallard et al. �2�.
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tween 0.2 m/s2 and 0.5 m/s2. As we will need a reference
value for the pedestrian response below, we use g0
=0.3 m/s2, as established by Nakamura �17�. The parameter
c also contains a time scale for the adjustment of stepping
that we denote �. We estimate � to be of the order of the
stepping period, which is approximately one second for typi-
cal walkers. Thus we model the constant b by

b = �g0��−1, �69�

where � is expected to be of the order of one second.
The remaining parameters can be obtained from the data

on walker forces on the bridge. With f =25N �Ref. �20��, �
=2 �Refs. �1–3��, 	̃=0.09 �Ref. �14��, and g0=0.3 m/s2,
Eq. �65� yields k= �580/��N s /m. This is to be compared
with the value established by Dallard et al., k�300N s /m,
suggesting �=1.9 s, confirming that � is of the order of a
second, as originally supposed. From �64� the calculated
value of k will decrease if pedestrians adjust their step place-
ment to the vibrations less quickly, if the frequency distribu-
tion is wider than estimated in Ref. �14�, or if the forcing
amplitude is reduced. It will move up if the acceleration
response constant g0 is reduced.

VI. CLOSING REMARKS

The model proposed in Ref. �11� and here is, we believe,
a minimal model that describes the onset of synchronized
walking and lateral oscillations on bridges. By tracing the

consequences of terms in a more general class of models we
have shown here, that at least for the onset of the synchro-
nization, how the more general model can be reduced to the
basic ones used in Ref. �11� and in the numerical simulations
in Sec. IV B.

The main modeling assumption and free parameter enters
in the coupling between the phase dynamics of the walking
and the bridge oscillation. The specific coupling used can be
tested experimentally, e.g., by monitoring the walking of
people and the bridge oscillation, as in the studies of Refs.
�17,18�. It is reassuring that a consistent description of the
experimental observations can be achieved with a plausible
estimate for this parameter.

The dependence of the synchronization on the frequency
distribution can be verified, for instance, by externally stimu-
lating the walkers with the help of a metronome to move in
synchrony �as in Ref. �22��: this will narrow their frequency
distribution and hence bring down the critical number for
inducing a transition.
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